
Hierarchical Pattern Mapping

Cyril Soler Marie-Paule Cani Alexis Angelidis

iMAGIS� / GRAVIR-IMAG / INRIA

Abstract

We present a multi-scale algorithm for mapping a texture defined by
an input image onto an arbitrary surface. It avoids the generation
and storage of a new, specific texture. The idea is to progressively
cover the surface by texture patches of various sizes and shapes,
selected from a single input image. The process starts with large
patches. A mapping that minimizes the texture fitting error with
already textured neighbouring patches is selected. When this error
is above a threshold, the patch is split into smaller ones, and the
algorithm recursively looks for good fits at a smaller scale. The
process ends when the surface is entirely covered. Our results show
that the method correctly handles a wide set of texture patterns,
which can be used at different mapping scales. Hierarchical texture
mapping only outputs texture coordinates in the original texture for
each triangle of the initial mesh. Rendering is therefore easy and
memory cost minimal. Moreover the initial geometry is preserved.

Keywords: Level of Detail Algorithms, Texture Mapping, Texture
Synthesis

1 Introduction

Being able to add small non-geometric details to CG objects is es-
sential for enhancing the visual complexity of virtual worlds. Tex-
turing arbitrary surfaces has thus attracted much interest within the
past few years. Among these methods, those which map or gener-
ate repetitive patterns onto surfaces (i.e, pattern mapping) are par-
ticularly promising, since they allow easy modeling of natural-style
materials such as stone, wood, marble or scales.

Pattern mapping is more effective, in terms of memory cost, than
painting or generating a new global texture map on each object.
However, regularly mapping rectangular texture samples is not ap-
plicable in the general case, since most surfaces have no global pa-
rameterization and cannot be unfolded onto a plane. Our new hier-
archical texture mapping method addresses this problem. It shows
that seamless texturing can be obtained by directly selecting and
mapping, from coarse to fine scales, some possibly not contiguous
texture patches from the input image. This method, which outputs
texture coordinates at the original mesh vertices, works for arbitrary
manifold meshes and texture patterns.

�iMAGIS is a joint project of CNRS, INRIA, Institut National Poly-
technique de Grenoble and Université Joseph Fourier.
Address: iMAGIS-GRAVIR, INRIA Rhne-Alpes, 655 avenue de l’Europe,
Montbonnot, 38334 Saint Ismier Cedex, France.
Email: [Cyril.SolerjMarie-Paule.CanijAlexis.Angelidis]@imag.fr.

1.1 Previous work

A complete review of all previous texture mapping and texture syn-
thesis methods is beyond the scope of this paper. Instead, we focus
on the recent progress made towards texturing an arbitrary surface
with patterns from an input image.

Pattern mapping methods Traditional approaches for textur-
ing a surface with repetitive patterns consist of mapping a 2D,
toroidal texture pattern on it. However, most surfaces do not have a
toroidal parameterization and cannot be unfolded onto a plane. Op-
timization algorithms can be used to limit texture distortion [Bennis
et al. 1991; Maillot et al. 1993; Lévy and Mallet 1998; Lévy 2001],
but cracks and singularities can hardly be avoided. Moreover, tex-
ture periodicity resulting from the mapping of a rectangular pattern
is obvious and often spoils the visual quality of results. Recently,
two new approaches were introduced to overcome these problems.

Neyret and Cani [Neyret and Cani 1999] precompute a set of tri-
angular texture samples that match together along borders. The sur-
face is tiled at the desired scale into curved triangular areas in which
these texture samples are mapped. Arbitrary surfaces are thus tex-
tured with low distortion, no cracks, and no singularities. Moreover,
the method uses little memory, since no global texture map needs to
be stored. It is, however, restricted to isotropic texture patterns. In
addition, creating the samples either demands delicate manual edi-
tion, or the implementation of specific procedural texture synthesis
methods. Lastly, the resulting textured mesh is more complex than
the initial one, since all the triangles crossing the limit of a texture
tile are split during the process.

A year later, Praun, Finkelstein and Hoppe [Praun et al. 2000]
proposed a suitable method for anisotropic textures. The idea is
to iteratively paste irregular texture patches onto a surface. The
patches locally overlap and align their main features with a pre-
defined vector field. The method generates very nice results, but is
again only applicable to a specific class of textures: the latter should

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

673

not be sensitive to discontinuities (in practice, the textures used
have internal discontinuities), and should have no low frequency
variations. As with the previous method, this one demands some
specific user input (the user must define texture tiles that fit with
the intrinsic texture discontinuities). Lastly, rendering requires ei-
ther composition operations or the storage of a global texture map.

Our method can be seen as an extension of these two techniques.
However, we believe that performing texture mapping at a given,
preselected scale is not sufficient: as stressed by Ying [Ying et al.
2001], the above methods cannot use texture tiles that are large with
respect to the underlying geometry, thus considerably restricting
the range of scales at which the pattern can be mapped. Moreover,
they cannot capture low-frequency patterns while preserving high
frequency randomness in the texture. Our method does not suffer
from these drawbacks, since it uses a hierarchical approach inspired
from the texture synthesis techniques described next.

Texture synthesis on surfaces The most recent contribu-
tions [Ying et al. 2001; Wei and Levoy 2001; Turk 2001] to tex-
turing an arbitrary surface from example follow a different strategy.
Rather than mapping texture samples, they generate a new texture
directly on the surface, an idea that had only been tried in the past
for specific classes of procedural textures [Turk 1991; Ebert et al.
1998; Walter et al. 2001].

These new methods were inspired by the recent progress of 2D
texture synthesis from example [Efros and Leung 1999; Wei and
Levoy 2000; Ashikhmin 2001; Hertzmann et al. 2001]. Image
generation is performed pixel by pixel by fitting a region adjacent
to the current pixel to similar regions of the input sample. The
pixel value is then chosen randomly among the possible, resulting
values. Wei and Levoy [Wei and Levoy 2000] make the method
more robust for smooth textures by synthesizing an image pyra-
mid from coarse to fine scales, and accelerate neighborhood search
using tree-structured vector quantization. Ashikhmin [Ashikhmin
2001] instead restricts the search to locations predicted by already
processed neighbouring pixels, thus reducing computations and in-
creasing image coherency. This makes the method usable for highly
structured patterns (e.g., small objects of familiar shapes). Hertz-
mann [Hertzmann et al. 2001] combines Wei’s and Ashikhmin’s
approaches, thus getting the benefits of both.

Three slightly different generalizations of Wei and Levoy’s
multi-scale synthesis algorithm [Wei and Levoy 2000] to surface
texturing were proposed in 2001, respectively by themselves [Wei
and Levoy 2001], by Turk [Turk 2001], and by Ying et al. [Ying
et al. 2001]. The first step for making the method usable in 3D is
to compute or define a vector field on the surface (as noted by Wei,
a random field can be used if the texture pattern is isotropic). A
mesh hierarchy is then built to serve as the image pyramid in the
2D synthesis approach. Since a level of the hierarchy will corre-
spond to a given texture scale, uniform surface sampling is required
for all meshes. Both Wei and Turk rely on Turk’s mesh re-tiling
method [Turk 1992] for building such a hierarchy from an arbitrary
mesh. Ying’s implementation only handles multi-resolution sub-
division surfaces. Another step is to define a correspondence be-
tween the texture grid and the region of the mesh that surrounds a
vertex. The multi-scale synthesis process can then be run, by treat-
ing vertices either in sweeping or in random order. The quality of
the results is almost similar to those obtained for 2D images. Ying
also extends Ashikhmin’s coherent synthesis algorithm [Ashikhmin
2001], thus making texture synthesis on surfaces usable for highly
structured patterns. Although they rely on a hierarchy of regular
meshes for texture generation, the methods above may output tex-
ture coordinates on the initial mesh, using either a global texture
map [Turk 2001] or a set of local maps that cover the surface [Ying
et al. 2001]. In all cases, they require the storage of a new texture
that fully covers each object.

In a way, our method synthesizes the texture on the surface,

and also uses a multi-scale process for ensuring global pattern co-
herency while minimizing texture distortion. However, we do so
by directly selecting texture patches of various size from the input
image. This accelerates the process since surface regions that could
be textured at a large scale require no further processing. More-
over, it suppresses texture storage memory requirements, since no
new texture is created.

Stitching image patches The idea of creating a new texture
by stitching together texture patches from a sample image was al-
ready used in 2D. Efros and Freeman [Efros and Freeman 2001]
create a larger image by selecting rectangular texture tiles of a given
size from the input image. Discontinuities across tiles boundaries
are reduced by connecting them along a non-straight path, which
minimizes an error. This method gives impressive results for a wide
range of textures, although small scale artifacts are generally no-
ticeable.

Extending Efros’s approach to 3D is not straightforward: in 2D,
Efros makes the method work by choosing the size of the texture
tiles according to the size of the patterns in the input image. This
cannot be done in 3D since the sharpness of the local surface ge-
ometry must also be taken into account. Moreover, texture patches
cannot be rectangles anymore if we want to make the method ef-
fective on arbitrary surfaces. Lastly, the orientation of the patches
in the texture may vary, which makes the search for good fits much
more difficult. Our hierarchical texture mapping algorithm solves
these problems. It improves the quality of connectivity across tex-
ture patches edges thanks to a local relaxation process.

1.2 Overview

The aim of this paper is to provide a general texturing method,
where the user provides a sample image and an arbitrary 3D mesh,
and gets texture coordinates on the mesh vertices as an output.
The new method belongs to pattern mapping approaches, our basic
claim being that everything we need is already there in the sample
image. As shown by the work cited above, such pattern mapping
cannot be performed at a single scale: Mapping large parts of the
image sample will work in almost flat regions, but may cause un-
bearable texture distortions over the surface’s sharp features. More-
over, due to the surface’s specific topology and geometry, texture
fitting with neighbouring patches cannot necessarily be done at a
large scale. We solve these problems by introducing a hierarchi-
cal texturing algorithm. The idea is to recursively pick up texture
patches from the sample image and map them onto the surface so
that they fit with their neighbors. We do so in a coarse-to-fine
manner, a surface region that could not be textured correctly be-
ing subdivided into smaller regions to improve the mapping. In the
worst case, the process ends up at the scale of individual mesh faces,
where remaining gaps in the texture are filled as well as possible.

Since the texture we get is made of patches of different shapes,
sizes, and orientations from the input image, no periodicity can be
observed. Moreover, although there will always be remaining ar-
tifacts if we zoom in close enough, visible texture discontinuities
along texture patch edges can be avoided. This is done by keeping
the fitting error under a given threshold.

2 Hierarchical mapping
2.1 Preprocessing

Before running the algorithm, the mesh, which is supposed to be
a single manifold surface, is first converted into a hierarchy of re-
gions. regions at each level of the hierarchy form a partition of the
surface. Sibling hierarchies of regions have already been used in
computer graphics [Garland et al. 2001]; We will use the already
existing term of face-clusters. Each cluster is defined by the list of
the mesh faces it includes and must have the topology of a disc.

674

For our algorithm, there are no further constraints: a face-cluster
may possess any number of sub-clusters at the next hierarchy level;
the cluster’s shapes are arbitrary. Their sizes need not be homo-
geneous, even at a given hierarchy level. Although many methods
could be used for building such a hierarchy, we give a very simple
algorithm for constructing it in Section 3.

In addition to the mesh, the user inputs an image of the de-
sired texture pattern. This image needs not be toroidal, although
this property will increase the number of possible fits for texture
patches. The user also specifies at which scale he wants the pattern
to be used.

2.2 Algorithm

The cluster hierarchy is processed in a coarse-to-fine manner until
all the mesh has been textured. At each level of the hierarchy, tex-
ture mapping is grown from one face-cluster to neighbouring ones.
Only clusters where no good texture mapping could be found at a
given hierarchy level are marked for further processing at the next
level.

The traversal of a level is implemented using a priority queue:
clusters that have the largest number of already textured neighbour-
ing regions are processed first, so as to increase the chances for
finding compatible solutions for all patches.

The process starts at the coarsest level of the hierarchy which
has a region verifying the flatness criteria. This face-cluster is flat-
tened in texture space, and a random choice is taken for its texture
map, according to the user-specified pattern scale. The neighbour-
ing clusters of the same hierarchy level are added to the priority
queue. The process then drains all queues from coarse to fine hier-
archy levels:

1. Take a face-cluster from the current queue;

2. Flatten the current cluster; If it is not sufficiently flat, com-
puting the mapping at this scale would produce texture distor-
tions. In this case, put its children into the queue correspond-
ing to the next hierarchy level, and go back to step 1;

3. Look in the texture for a possible position and orientation of
the flattened face-cluster that matches already textured neigh-
bors. Estimate the error due to texture discontinuities;

4. If this error is below a threshold, map texture coordinates onto
all polygons in the face-cluster;

Else subdivide the region (i.e., put its children into the queue
corresponding to the next level);

5. Add the non-textured neighbors of the face-cluster to the cur-
rent queue;

Although a vector field could be precomputed or specified to
guide pattern orientation as was done in [Praun et al. 2000; Wei and
Levoy 2001; Turk 2001], we instead let the orientation propagate
from the first texture patch to the others. As shown in Section 5,
this simple approach gives good results for the set of anisotropic
textures we used.

2.3 Problems to be solved

In addition to computing a hierarchy of regions from an arbitrary
mesh, we need algorithms for flattening a given face-cluster and
for efficiently searching for texture patches that fit with already tex-
tured neighboring regions. This needs to be done efficiently, since
evaluating the fit, pixel by pixel, with each possible position and
orientation could easily become a bottleneck in the algorithm.

3 Hierarchy of face-clusters
3.1 Setting up the hierarchy

Our algorithm needs a hierarchy of regions subdivided into levels,
such that (a) the regions of a given level constitute a partition of the
input mesh; (b) region borders are defined using the edges of the
input mesh; and (c) the regions of the deepest level are the faces of
the input mesh.

We define the control vertices of a face-cluster at level l as the
points of its contour shared by at least three regions at this level. For
each region, we store the list of control vertices and border vertices,
as well as pointers to its sub-regions and to the neighboring regions
of the same hierarchy level (see Figure 1).

We present two ways of obtaining such hierarchies: subdivision
surfaces and general mesh hierarchies.

Figure 1: Face cluster hierarchies. top row : level 1 and 2 of a
hierarchy built from subdivision surfaces (loop scheme). bottom
row: levels 1 and 2 of a general hierarchy constructed using our
method.

Subdivision surfaces Getting the required hierarchy of re-
gions is obvious if the input mesh is a subdivision surface. We sim-
ply use the parent-child relationship between subdivision patches
for setting up the hierarchy. Control vertices are defined as the ver-
tices of the subdivision patches (see Figure 1, top row). Some of
the results we show in Section 5 were computed with such surfaces.
The drawback of this approach is that its restricts the class of usable
surfaces.

General mesh hierarchies For a given input mesh, we pro-
ceed as follows: The first, coarsest face-cluster is made of the entire
surface. Then, we recursively subdivide a face-cluster into a vari-
able number n of sub-regions in the following way: we first select
n faces of the mesh in this region to be used as seeds for grow-
ing the sub-regions; for each untreated face of the mesh sharing
an edge with at least one of the growing sub-regions we merge it
to the sub-region for which the distance to the seed face is mini-
mal. Sub-regions grow inside the current face-cluster until paving
is completed.

The number n of sub-regions is adapted to each face-cluster so
as to keep a nearly uniform region size at each hierarchy level and
to avoid sub-regions with fewer than three control vertices. The
seeds are randomly chosen while checking that the control vertices

675

of the sub-regions satisfy the non alignment property enounced in
Section 3.2, for the stable computation of texture coordinates. At
each level we compute the borders of the sub-regions and possi-
bly exchange triangles between neighboring sub-regions in order to
improve the border’s regularity. We also deduce from these borders
the control vertices of the sub-regions.

This method results in a hierarchy of regions of arbitrary shapes
and sizes. This is not a problem since the fitting method described
in Section 4 works for any projected patch shape in texture space.
We may even say that for some textures, complex region borders
tend to give better visual results, since tinny fitting errors are less
visible when they occur along a non-straight path [Efros and Free-
man 2001].

3.2 Flattening a surface region

Mapping a portion of the input texture onto the mesh requires the
definition of a local mapping from surface space to texture space.
Each time a face-cluster is processed (see Section 2), it first needs
to be flattened. In practice, regions at the coarsest levels of the
hierarchy are hardly ever used, since there is little chance to unfold
them properly, at least for closed meshes. They may even have a
non-zero topological genus. Similarly, face-clusters whose border
is made of several disconnected components (such as a cylinder for
instance) are discarded.

Most local flattening methods used in previous work [Bennis
et al. 1991; Praun et al. 2000; Wei and Levoy 2001; Turk 2001]
were aimed at flattening the neighborhood of a given mesh vertex.
A spiral traversal has been, for instance, used for progressively flat-
tening the region around a vertex. Our problem is different, since
we have to flatten regions of totally arbitrary shapes in such a way
that their projected border fits, in 2D, with the projected border
computed for neighboring regions. This can actually be achieved
using harmonic maps [Eck et al. 1995] through the resolution of
a linear system. We have chosen to develop our own approach to
avoid the cost of inverting a linear system for each mapped face-
cluster, based on barycentric coordinates. This approach is de-
scribed next.

Barycentric coordinates for mesh vertices We do not
compute any analytical expression for the mapping function of a
region of the mesh to texture space. It is rather defined by a recur-
sive procedure which relies on the face-cluster hierarchy:

(1) Suppose that we know the coordinates for control points
P0:::Pn of a face-cluster in texture space. We define the relative
positions of the mapped control points P00:::P0

N of its sub-faces us-
ing barycentric coordinates (see Fig. 2). Let us call T (l; j) the vector
of coordinates of the control points of a patch j at level l in tex-

ture space, and C(l; j)
bary the matrix of its barycentric coordinates with

respect to the parents’ control points. We set:

T (l; j)
=Cl; j

bary �T (l�1;Parent(l; j)) (1)

(2) When projecting a face-cluster in texture-space however, we
need to fix the texture coordinates of its control vertices. These tex-
ture coordinates are precomputed by constructing a control polygon
in texture space. As any face-cluster may be a starting point for re-
cursive texture mapping, such a control polygon is computed for
each face-cluster (see right parts of Figures 2 and 3).

The control polygon of a face-cluster is obtained by measuring
the relative distance and angles of the polygon formed by its con-
trol vertices in 3D space. Then we build, in texture space, a closed
polygon with the same edge lengths, and angles as close as possible
to the original ones. Flat polygons in 3D space are shape-invariant
through this transformation. Others are all the more deformed that
the face-cluster contour is large and non flat (see examples in Fig-
ures 2 and 3).

P1

P’
2

0

P’

P

1
P’

2P

0

0P

1.0
0.0
0.0 0.0

1.0
0.0

0.0
0.0
1.0

0.546
0.288
0.166

2P

1
P’

0.058
0.505
0.437

1P2
P’

0P’

0.632

−0.246
0.612

Figure 2: Top left: a face-cluster de-
fined by 3 control points P0;P1 and
P2, one of its sub-faces out-lined in
blue. Top right: the corresponding con-
trol polygon in texture space, and the
barycentric coordinates of the control
vertices of sub-faces, in blue. Right:
the resulting flattened patch in texture
space.

P0

1P

0P’

P

2
P’

1
P’

2

The barycentric coordinates of the sub-vertices in texture space
are computed in three different ways depending on their nature: (1)
Vertices that are already vertices of the parent face-cluster get a
zero coordinate everywhere except on that vertex. (2) For vertices
that belong to an edge of the parent face-cluster, we compute the
average value of the mesh normal along this edge and project the
3D polygon formed by the parent face-cluster’s control points onto
the plane defined by this normal and the current vertex. Barycen-
tric coordinates of the vertex are computed with respect to this pro-
jected polygon. (3) Finally, for vertices lying inside the parent face-
cluster, we use the orientation of the mean square plane defined by
the parent face-cluster border: we project the polygon formed by
the parent face-cluster’s control points and the current vertex onto
this plane. We then compute the barycentric coordinates using this
projected polygon.

2

3

P

P

P

P1

0
P0

P3

1P2P

Figure 3: A face-cluster in surface-space (left) with its 4 control
points, and its projection in texture space using our procedural map-
ping algorithm (right). Only the control points of this cluster and
the barycentric coordinates of clusters below are needed to produce
the mapping.

This procedural definition has some advantages against explicit
mapping functions : First it lets us continuously deform the patch
in texture space by moving one of its control vertices. Secondly,
the mapping of a face-cluster is very fast and straightforward what-
ever the geometry of its control polygon in texture space (this is an
advantage over harmonic maps), which lets us modify the mapping
at an optimal cost. Finally the computation of texture coordinates
is very stable, provided that the control points the barycentric co-
ordinates are refering to do not form a very flat polygon (this pro-
duces very high or even infinite values that accumulate errors down
the recursive computation of texture coordinates). In any case, we

676

may choose among the possible vertices of the parent control poly-
gon the base that gives the smallest barycentric coordinates, which
is all the more easy that the face-clusters are not too much elon-
gated. This condition is intrinsically verified by subdivision sur-
faces, whereas it is enforced for general surface hierarchies during
their construction.

Flattening error criterion For a given face-cluster, let r be the
ratio between its area in surface space and its area in texture space.
We then define the flattening error of a face-cluster as Ef lat by:
E f lat = jr�1j

By construction Ef lat is zero for flat face-clusters and grows with
surface deformation. It is used as an heuristic measure of flattening
error in step 2 of the algorithm of Section 2.

4 Texture patches fitting

This section explains how to texture a face-cluster which has some
already textured neighbors while ensuring the match of the texture
along common edges. The next paragraphs describe the four steps
of the algorithm: we first extract a mask that represents the (already
fixed) texture surrounding the current patch. We then look for the
location in the texture image that best fits this mask. In a third step,
we obtain texture coordinates through a recursive computation. Fi-
nally, we slightly tune texture coordinates along the edges using
a local relaxation. This gives us the final mapping and an output
fitting error for the patch.

4.1 Extraction of the mask

For most texture patterns, matching color values of pixels along
common edges would not be sufficient for obtaining a good fit. We
rather match the texture over the union of narrow bands extracted
from textured neighbouring regions, along common edges (see Fig-
ure 5, left). This is a simple way for taking into account derivatives
and local characteristics of the texture across regions’ borders.

The extraction of the mask from neighboring texture patches re-
quires being able to cut from these patches a band of approximately
constant width. Without this ability, the algorithm would assign a
nonuniform importance to the quality of texture fitting at different
locations along the edge. In order to achieve this, we equip the con-
trol vertices of all face-clusters in the hierarchy with so called topo-
logical barycentric coordinates computed in surface space (see Fig-
ure 4, left). Note that these coordinates are different from the texture
space barycentric coordinates defined in Section 3.2 (which will
serve for recursive texture mapping) and are related to the topology
of the surface mesh, hence their name.

0.75

0.5

0.0

1.0 0.0

0.0

0.0

0.5

0.0
0.5

0.2

0.25

0.125

P0

0.5

0.5

0.5P0

0.0
0.5
0.5

1P
P

0

P2

P’

1

2
P’

P’

2P

1

Figure 4: Left: topological coordinates assigned to control points
of a sub-cluster (see text). Right: points in the patch for which the
position value (in magenta) toward the edge is less than 0:2 are kept
to obtain the mask (in cyan).

Let us call C(l; j)
topo the matrix of topological coordinates for the

control vertices of a face-cluster defined with respect to the parent’s
control vertices. To extract a band along the edge of a given face-
cluster, we need such coordinates for all mesh faces (i.e., for control

points at the bottom of the hierarchy), but in the base of the current
face-cluster j0, of level l0. Let us call these coordinates M(l; j) for
the face-cluster j at level l. We have:

M(l; j)
=C(l; j)

topo �M(l�1;Parent(l; j)) and M(l0; j0) = Identity

This gives us a recursive way of computing Mmaxlevel; j.
To extract the band, we then define the position value of a ver-

tex with respect to an edge of the face-cluster j0 as being the sum
of its topological barycentric coordinates with respect to j0, except
for the coordinates associated with the two vertices that define the
edge. For instance, in Figure 4, right, each face has three topologi-
cal barycentric coordinates respectively associated with P0, P1, and
P2; the position value of a vertex with respect to the edge (P1;P2)

is given by its first coordinate. The band is obtained by selecting
the portion of the base mesh triangles for which the position value
is less than a given threshold (typically 0:2).

For subdivision surfaces, obtaining topological barycentric coor-

dinates C(l; j)
topo with respect to the parent face-cluster is straightfor-

ward, since control vertices of the sub-faces of a given face-cluster
are always located at the middle of an edge. Values of the topo-
logical coordinates Cl; j are thus set to 1

2 with respect to the two
extremities of the edge and 0 with respect to the other control ver-
tices of the parent face-cluster. For a general face-cluster hierarchy,
we keep the same policy for control points located on edges. For
other ones, we use a set of coordinates proportional to the respective
distances to the control points of the parent face-cluster. This ap-
parently complex solution actually allows us to extract a band from
an edge of any face-cluster, regardless of its shape and deformation.

The mask I of the current region is defined as the union of the
bands from neighbouring already textured face-clusters. In practice
we obtain it using off-screen rendering (see Figure 5,right).

4.2 Search for the best match

The second step of texture patch fitting is to look for the portion of
the texture image that best matches the mask. We operate entirely in
texture space. To do this, we try to find the position and orientation
of the mask such that it fits best in the underlying texture. Once this
position found, the adequate part of the texture adjacent to the mask
is used to texture the current face-cluster.

Best mask position for a given orientation Let T (x), x 2
[0;1]2, be the texture sample, first supposed to be toroidal. Let J
be the support function of the current mask I, that is, J(x) = 1 or 0
depending whether x lies in the union of bands from neighbouring
textured patches or not. Note that J(x)T (x) = I(x).

For a given translation x0 of I over T , we define the mean square
error between the mask I and the sample T by:

E(x0) = ∑
x

J(x)(I(x)�T (x+ x0))
2

We are thus looking for points x0 for which E(x0) is minimal. We
have:

E(x0) = ∑
J(x)6=0

I(x)2
�2 ∑

J(x)6=0

I(x)T (x+ x0)+ ∑
J(x)6=0

T (x+ x0)
2

But J cancels in the first two terms since I is supposed to be zero out
of the mask support. Moreover, if we denote by f �g the correlation
operation2 between two images f and g, we can write:

E(x0) = ∑
x

I(x)2
�2(I �T)(x0)+(J � (T2

))(x0)

= ∑
x

I(x)2
+

�
�2(I �T)+ J � (T 2

)

�
(x0) (2)

2The correlation between two images f and g is defined by: (f �g)(x0)=
∑x f (x)g(x+ x0).

677

Figure 5: To texture a region that has already tex-
tured neighbors (upper-left, in red), we build a
mask image (at right) from the texture of these
neighbors (upper-middle, light red). We then look
over the texture sample for candidate locations
that match this mask (upper-middle, dark red and
white). The best location (in white) is used to define the texture of
the face-cluster (upper-right).

Computing this term directly would lead to a huge amount of
computations, since the complexity would be the square of the
number N of pixels in the texture. Fortunately, the correlation of
two functions f and g can be computed O(N logN) by moving to
Fourier space. We use the fast Fourier transform (FFT) (see [Press
et al. 1992]) for computing the Fourier transform F(f) and the con-
jugate Fourier transform F(g). We then have:

f �g = F�1
(F(f)�F(g))

Looking at Equation (2), we thus need to compute the Fourier
transforms of T , T 2, I and J, build the image of E and look into
it for values near 0. Fortunately, T and T2 being constants, their
Fourier transforms need to be computed only once for texturing an
entire object.

If the texture sample is not toroidal, the technique above still
works. However, the position found must not make the new texture
patch cross the border of the image. This reduces the number of
possible matches, especially when the mapping scale is large.

Best mask position and orientation The computation above
finds the best mask position for a given image orientation. In prac-
tice, we are also looking for the best fit through various orientations.
For this, we precompute and store the Fourier transforms of rotated
versions of T and T2 for a fixed number of angles (19 in our im-
plementation). During the texturing process, we compute the best
position for the mask for each orientation, and select the best result.
(A random orientation is used when rendering the mask, in order to
avoid getting trivial solutions such as the direct neighbor of a sin-
gle neighbouring patch). The overall cost of each fitting is still the
cost of a single Fourier transform for I and J, so the computation
remains efficient.

In practice, all orientations of T and T2 are precomputed using
the graphics hardware. Then we precompute and store their Fourier
transforms. During texturing, I and J corresponding to the current
region to texture are computed using off-screen rendering of the
mask. I is obtained by reading the color values, whereas J comes
from the depth values. From these two images we compute ∑ I(x)2

and the Fourier transforms F(I) and F(J), and thus get the error
function E using equation 2 for all orientations.

The computations have been presented up to now without paying
attention to the value domain for functions T and I. We work in
hsv color space. We find that this gives better results than working
in rgb space or gray levels, especially for textures like the one in
Figure 5. Note that only T;T2 and I (but not J) need to be turned
into hsv in equation 2.

4.3 Recursively mapping texture coordinates

From the position of the mask in the texture sample produced by the
previous calculation, we deduce the position in texture space of the
control polygon of the current face-cluster. We still need to assign
texture coordinates to the vertices of the faces of the base mesh that
belong to it. This is done by recursively applying equation (1) down
to the mesh triangles.

Careful attention must however be paid to the following issues:
(1) some vertices of the base-mesh are reached more than once dur-
ing the recursive traversal of the hierarchy (typically vertices on the
boundary of two sub-clusters). Although the coordinates of these
vertices are computed using the same original set of coordinates for
the cluster at the top of the hierarchy, their final values may differ
slightly: due to the nonlinearity of the procedural mapping function
defined in section 3.2, their position may depend on the sequence of
parents through which they have been computed. This may cause
what we call in-cluster cracks. (2) this difference of relative posi-
tion also appears also on vertices of the edges shared with already
computed neighbors of the face-cluster. We call these errors border-
cracks. Both problems are efficiently solved as follows: an array of
texture coordinates for the vertex of the base mesh is initialized
with zero values; then, the contribution of all vertices is added dur-
ing the recursive traversal of the hierarchy and averaged to obtain a
unique value of texture coordinate for each vertex. This solves the
in-cluster cracks problem. The second problem is solved by com-
puting, for each shared vertex, the texture coordinates it would take
if computed from the neighboring patch positioned exactly next to
the current one. These values are used during the recursive traver-
sal of the current face-cluster in replacement of the locally com-
puted values, which exactly adapts the texture deformation to fit the
mapped edge of already textured neighbors. The resulting small de-
formation is automatically distributed inside the face-cluster thanks
to the use of the barycentric coordinates.

4.4 Local relaxation along edges and output error

After mapping the texture onto a face-cluster, some discontinuities
with the texture on the neighboring face-clusters usually persist.
This happens because a perfect solution for matching the mask of
the neighbors does not always exist, especially when more than one
neighbor is textured. Even a small discontinuity may become no-
ticeable, due to the particular sensitivity of the human eye.

Consequently, we deform, in texture space, the edges that are
shared with neighboring patches in order to minimize discontinu-
ities along them. This is done by recursively visiting the vertices
of sub-clusters located along the edge, and moving them in order
to minimize a local error criterion. This local error is defined as
the sum of differences per pixel, along the common edge, between
the textures of the current and neighbouring patches, weighted by
a function representing the influence of the current vertex, depicted
in Figure 6, right. The search for a new position for each vertex is
done using a recursive greedy algorithm which randomly moves the
vertex within a smaller and smaller area depending on the hierarchy
level. An similar algorithm is also applied to the vertices of the con-
trol polygon in order to minimize error at these particular points.
In any case, we only move vertices of the current face-cluster, not
those of its already textured neighbors.

Note that the side effect of moving the control vertices of a face-
cluster in texture space is to deform the texture mapped on the sur-
face. This deformation is seamlessly distributed inside the face-
cluster thanks to our recursive mapping method.

5 Results

Multi-scale pattern mapping works surprisingly well for a wide va-
riety of textures. Most of the texture samples used in this section

678

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

b

a

P’

0
P’

1.0

2P

d

c

P
0 P’

1

2

P0

2P

1P

0

1P

2P

1P’

P e
f

P’’

g

Texture Texture

Figure 6: Local relaxation along the edge (P0;P2) of a face-cluster:
Two successive steps of discontinuity minimization are shown.
Left : point P0

1 is first allowed to move in the red circle. Once its new
position is found, we look for vertices of the next level (Middle);
P00 is concerned and its new position is searched within a smaller
region, and so on. In pink, we show the region of the patch onto
which the deformation of the texture will occur due to the vertex
displacement. Right : weighting function used when measuring the
discontinuity at a point with respect to an edge.

were taken from previous work [Efros and Leung 1999; Neyret
and Cani 1999; Ashikhmin 2001; Ying et al. 2001; Wei and Levoy
2001; Turk 2001; Efros and Freeman 2001], which simplifies the
comparison of results. The table below shows typical computation
times.

Object (type) Polygons Related figure, Time (min)
and texture size

Sphere (S) 3072 Fig. 10, 256�256 1
Bunny (M) 2962 Fig. 9,128�128 2
Pumpkin (M) 10 000 Fig. 8,128�128 21
Octopus (S) 34 176 Fig. 9, 256�256 29
Triceratops (M) 5 660 Fig. 10, 128�128 30

Figure 7: Computation times: Types (S) and (M) respectively indi-
cate a subdivision surface or a general mesh.

Using our method is easy: the user just provides a mesh, a tex-
ture pattern, and specifies the scale at which the pattern should be
mapped, as illustrated in Figure 8. He may also choose the first
texture patch for controlling the global orientation of the patterns
over the surface. The hierarchical texture mapping computation
then takes from a few minutes to a few tens of minutes on standard
graphics workstations. Since the texturing method will be able to
save time by mapping flat regions at a very coarse scale (if the tex-
ture is not too constrained yet), better results are obtained by start-
ing texture mapping in such regions.

Figure 8: The user controls the scale
at which the texture pattern is mapped.
Right : face-clusters used by the algo-
rithm during the mapping of the top-
right pumpkin. Note the appearent

continuity of the
result, and the
various sizes (and
hierarchy levels)
of the clusters
used.

5.1 Isotropic versus anisotropic patterns

The method works with no problem for isotropic patterns such as
those used in [Neyret and Cani 1999; Ying et al. 2001]. Results are
depicted in figure 9.

Figure 9:
Mapping isotropic
texture patterns.

In the case of anisotropic patterns, increasing the width of the
band used for texture fitting along patch boundaries may be neces-
sary to better capture and propagate pattern orientation. Once this
parameter was tuned, we had no problem generating textures such
as bark, wood, or text with a coherent orientation. See Figure 10.

Figure 10: Our method succeeds in capturing and propagating the
main orientation of anisotropic texture patterns.

5.2 Highly structured patterns

Our method is particularly adapted to highly structured patterns.
Some results are depicted in Figure 11.

As with previous methods [Neyret and Cani 1999; Efros and
Freeman 2001], the minimal size of the texture patches should not

679

Figure 11: Re-
sults for highly
structured tex-
ture patterns.

be smaller than the pattern size, or we may loose the pattern struc-
ture. A solution to this problem, which would occur if we mapped
the pattern at a very large scale relatively to the surface geometry,
is suggested in the next section.

6 Conclusion

The hierarchical texture mapping algorithm we have introduced
demonstrates that an arbitrary surface can be textured by directly
mapping patches of various sizes, shapes and orientations from an
input image. This new method combines many advantages: The
texture patches mapped at a large scale propagate the global struc-
ture of the pattern, while texturing at a smaller scale adequately fills
the gaps and reduces texture distortion over sharp geometric fea-
tures. Combining these different scales increases efficiency, since
texture mapping at the finest scale will only be done in specific
sparse regions. Moreover, the algorithm directly outputs texture
coordinates for the triangles of the initial mesh, which minimizes
memory requirement (no new texture needs to be stored) and eases
rendering (which makes it preferable to methods like lapped tex-
tures at equivalent image quality). Lastly, the approach works for
a wide range of textures, regardless of their isotropy, frequency of
variation and inner structure.

The method will generally leave small texture fitting errors
across patch boundaries. For many applications, this is not a prob-
lem: just as with surface approximations using triangles, the tex-
tures we generate should be viewed from at least a given minimal
distance. Texture discontinuities will indeed appear in very close
views, together with other artifacts such as tangent discontinuities
due to the discretization into triangles. If we need to avoid these
discontinuities, an idea would be to refine the mesh using a subdi-
vision scheme, in order to map texture on sub-triangles. However,
using smaller texture patches is not sufficient for improving the vi-
sual quality of the mapping: while doing so, the low frequency
structure of the texture patterns may be lost. A solution would then
be to combine our multi-scale mapping algorithm with the texture
transfer methods of Efros [Efros and Freeman 2001] and Hertz-
mann [Hertzmann et al. 2001]. The texture found to fit badly at a
large scale would serve as a reference image to guide texture map-
ping at a finer scale, thus maintaining the global coherency of the
patterns. Implementing this extension would only demand a change
to the error measure, in order to take the reference image into ac-
count.

Another idea would be to rely on texture transfer tech-
niques for offering more user control, as first suggested by
Ashikhmin [Ashikhmin 2001]. The user would paint the desired av-
erage colors directly on the initial mesh, and texture mapping would
follow these choices by picking the appropriate texture patches in
the sample image.

Another extension of our method would consist of locally con-
trolling the scale of the texture along the surface, as many natural
objects tend to produce a similar patterns at multiple scales. Also,
mapping more than one texture while maintaining smooth transi-
tions would further enrich the method.

7 Acknowledgements

Special thanks to John F. Hugues for re-reading the last version
of the paper and for his suggestions about possible improvements.
Thanks also to Rob Jagnow for the pumpkin model and to the re-
viewers for their comments.

References
ASHIKHMIN, M. 2001. Synthesizing natural textures. 2001 ACM Symposium on

Interactive 3D Graphics (March), 217–226. ISBN 1-58113-292-1.

BENNIS, C., VÉZIEN, J.-M., IGLÉSIAS, G., AND GAGALOWICZ, A. 1991. Piece-
wise surface flattening for non-distorted texture mapping. In Computer Graphics
(SIGGRAPH ’91 Proceedings), T. W. Sederberg, Ed., vol. 25, 237–246.

EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K., AND WORLEY, S., Eds.
1998. Texturing and Modelling: A procedural approach. Morgan Kaufmann Pub-
lishers.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUET-
ZLE, W. 1995. Multiresolution analysis of arbitrary meshes. In SIGGRAPH 95
Conference Proceedings, Addison Wesley, R. Cook, Ed., ACM SIGGRAPH, 173–
182.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for texture synthesis and
transfer. Proceedings of SIGGRAPH 2001 (August), 341–346.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric sampling. In
International Conference of Computer Vision, vol. 2, 1033–1038.

GARLAND, M., WILLMOTT, ., AND HECKBERT, P. 2001. Hierarchical face clustering
on polygonal surfaces. In ACM Symposium on Interactive 3D Graphics.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND SALESIN, D. H.
2001. Image analogies. Proceedings of SIGGRAPH 2001 (August), 327–340.
ISBN 1-58113-292-1.

LÉVY, B., AND MALLET, J.-L. 1998. Non-distorted texture mapping for sheared
triangulated meshes. Proceedings of SIGGRAPH 98 (July), 343–352. ISBN 0-
89791-999-8. Held in Orlando, Florida.

LÉVY, B. 2001. Constrained texture mapping for polygonal meshes. Proceedings of
SIGGRAPH 2001 (August), 417–424. ISBN 1-58113-292-1.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture mapping.
In Computer Graphics (SIGGRAPH ’93 Proceedings), J. T. Kajiya, Ed., vol. 27,
27–34.

NEYRET, F., AND CANI, M.-P. 1999. Pattern-based texturing revisited. Proceedings
of SIGGRAPH 99 (August), 235–242.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. Proceedings
of SIGGRAPH 2000 (July), 465–470. ISBN 1-58113-208-5.

PRESS, TEUKOLSKI, VETTERLING, AND FLANNERY. 1992. Numerical Recipes in
C. Cambridge University Press.

TURK, G. 1991. Generating textures for arbitrary surfaces using reaction-diffusion. In
Computer Graphics (SIGGRAPH ’91 Proceedings), T. W. Sederberg, Ed., vol. 25,
289–298.

TURK, G. 1992. Re-tiling polygonal surfaces. In Computer Graphics (SIGGRAPH
’92 Proceedings), E. E. Catmull, Ed., vol. 26, 55–64.

TURK, G. 2001. Texture synthesis on surfaces. Proceedings of SIGGRAPH 2001
(August), 347–354. ISBN 1-58113-292-1.

WALTER, M., FOURNIER, A., AND MENEVAUX, D. 2001. Integrating shape and
pattern in mammalian models. Proceedings of SIGGRAPH 2001 (August), 317–
326. ISBN 1-58113-292-1.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-structured vector
quantization. Proceedings of SIGGRAPH 2000 (July), 479–488. ISBN 1-58113-
208-5.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbitrary manifold sur-
faces. Proceedings of SIGGRAPH 2001 (August), 355–360. ISBN 1-58113-292-1.

YING, L., HERTZMANN, A., BIERMANN, H., AND ZORIN, D. 2001. Texture and
shape synthesis on surfaces. In Eurographics Rendering Workshop 2001, Springer
Wein, S. Gortler and K. Myszkowski, Eds., Eurographics, 301–312.

680

